Epilepsy


Research Works

Principal investigator : Maxime Guye

The central objective of the Epilepsy group is to improve diagnosis and treatment of drug-resistant focal epilepsy patients at the individual level. Translation of MRI-based features into robust biomarkers is impeded by the large clinical heterogeneity across focal epilepsy patients and poses perhaps the biggest hurdle to overcome towards improving the diagnosis and treatment of epilepsy. Focusing on both temporal and non-temporal lobe epilepsy (prefrontal, insular-opercular, central-premotor or posterior) types, our group employs novel, multiparameter 3 Tesla and 7 Tesla MRI methodologies to identify brain phenotypical correlates of patient characteristics such as epilepsy type, quantitative SEEG metrics and cognitive functioning. By combining MRI, SEEG and other clinical data, our research aims to develop non-invasive morphometric- (e.g., volume and shape), microstructure- (e.g., T1, T2*, QSM, diffusion, 23Na) and connectivity-based MRI biomarkers of epileptogenic networks with the goal to improve patient care and reduce patient burden. We closely collaborate with clinicians (led by Fabrice Bartolomei) at the Department of Epileptology and Clinical Neurophysiology (APHM La Timone Hospital) and researchers (led by Viktor Jirsa) at the Institute of Systems Neuroscience (Aix-Marseille University) to bring together expertise related to MRI, epilepsy and brain modeling. The development of the Virtual Epileptic Patient (using The Virtual Brain infrastructure) is illustrative of this collaboration and provides a platform to evaluate and validate novel MRI biomarkers and their potential impact on presurgical planning and/or deep brain stimulation at the individual patient level.

Representative recent publications

Combining sodium MRI, proton MR spectroscopic imaging, and intracerebral EEG in epilepsy. Azilinon M, Makhalova J, Zaaraoui W, Medina Villalon S, Viout P, Roussel T, El Mendili MM, Ridley B, Ranjeva JP, Bartolomei F, Jirsa V, Guye M.Hum Brain Mapp. 2022 Oct 11. doi: 10.1002/hbm.26102. Online ahead of print.

Epileptogenic networks in drug-resistant epilepsy with amygdala enlargement: Assessment with stereo-EEG and 7 T MRI. Makhalova J, Le Troter A, Aubert-Conil S, Giusiano B, McGonigal A, Trebuchon A, Carron R, Medina Villalon S, Bénar CG, Ranjeva JP, Guye M, Bartolomei F.Clin Neurophysiol. 2022 Jan;133:94-103. doi: 10.1016/j.clinph.2021.10.012. Epub 2021 Nov 10.

7T Epilepsy Task Force Consensus Recommendations on the Use of 7T MRI in Clinical Practice. Opheim G, van der Kolk A, Markenroth Bloch K, Colon AJ, Davis KA, Henry TR, Jansen JFA, Jones SE, Pan JW, Rössler K, Stein JM, Strandberg MC, Trattnig S, Van de Moortele PF, Vargas MI, Wang I, Bartolomei F, Bernasconi N, Bernasconi A, Bernhardt B, Björkman-Burtscher I, Cosottini M, Das SR, Hertz-Pannier L, Inati S, Jurkiewicz MT, Khan AR, Liang S, Ma RE, Mukundan S, Pardoe H, Pinborg LH, Polimeni JR, Ranjeva JP, Steijvers E, Stufflebeam S, Veersema TJ, Vignaud A, Voets N, Vulliemoz S, Wiggins CJ, Xue R, Guerrini R, Guye M.Neurology. 2021 Feb 16;96(7):327-341. doi: 10.1212/WNL.0000000000011413. Epub 2020 Dec 22.

Connectivity strength, time lag structure and the epilepsy network in resting-state fMRI. Bandt SK, Besson P, Ridley B, Pizzo F, Carron R, Regis J, Bartolomei F, Ranjeva JP, Guye M.Neuroimage Clin. 2019;24:102035. doi: 10.1016/j.nicl.2019.102035. Epub 2019 Oct 23.

Anatomic consistencies across epilepsies: a stereotactic-EEG informed high-resolution structural connectivity study. Besson P, Bandt SK, Proix T, Lagarde S, Jirsa VK, Ranjeva JP, Bartolomei F, Guye M.Brain. 2017 Oct 1;140(10):2639-2652. doi: 10.1093/brain/awx181.

Associated Keywords

  • Brain Connectivity
  • Diffusion MRI
  • EEG-fMRI
  • Graph
  • Morphometry
  • MRSI
  • Partial Epilepsy
  • Quantitative MRI
  • rs-fMRI
  • SEEG
  • Sodium MRI
  • Structural MRI
  • TVB
  • Virtual Epileptic Patient

Team members :

Testud Benoit —
EL MENDILI Mohamed Mounir —
HAAST Roy —
Dary Hugo —
Stellman Jan-Patrick —
Makhalova Julia —
Azilinon Mikhael —