Partenaires

CRMBM



Search

On this website

On the whole CNRS Web

CNRS

AMU
AMU

Home page > Recent Publications

Recent Publications

2017

Journal Article

  • BESSON P., BANDT S. K., PROIX T., LAGARDE S., JIRSA V. K., RANJEVA J. - P., BARTOLOMEI F., GUYE M. “Anatomic consistencies across epilepsies: a stereotactic-EEG informed high-resolution structural connectivity study.”. Brain: A Journal of Neurology [En ligne]. 2017. Vol. 140, n°10, p. 2639-2652. Disponible sur : < http://dx.doi.org/10.1093/brain/awx181 > (consulté le no date)
    Mots-clés : brain networks, crmbm, diffusion weighted imaging, epilepsy, SEEG, structural connectivity.

  • BYDDER M., RAPACCHI S., GIRARD O., GUYE M., RANJEVA J. - P. “Trimmed autocalibrating k-space estimation based on structured matrix completion.”. Magnetic Resonance Imaging [En ligne]. 2017. Vol. 43, p. 88-94. Disponible sur : < http://dx.doi.org/10.1016/j.mri.2017.07.015 > (consulté le no date)
    Résumé : PURPOSE: Parallel imaging allows the reconstruction of undersampled data from multiple coils. This provides a means to reject and regenerate corrupt data (e.g. from motion artefact). The purpose of this work is to approach this problem using the SAKE parallel imaging method. THEORY AND METHODS: Parallel imaging methods typically require calibration by fully sampling the center of k-space. This is a challenge in the presence of corrupted data, since the calibration data may be corrupted which leads to an errors-in-variables problem that cannot be solved by least squares or even iteratively reweighted least squares. The SAKE method, based on matrix completion and structured low rank approximation, was modified to detect and trim these errors from the data. RESULTS: Simulated and actual corrupted datasets were reconstructed with SAKE, the proposed approach and a more standard reconstruction method (based on solving a linear equation) with a data rejection criterion. The proposed approach was found to reduce artefacts considerably in comparison to the other two methods. CONCLUSION: SAKE with data trimming improves on previous methods for reconstructing images from grossly corrupted data.
    Mots-clés : Artefacts, crmbm, IRLS, Parallel imaging, Robust, Structured low rank approximation.

  • CHATEL B., HOURDé C., GONDIN J., FOURé A., LE FUR Y., VILMEN C., BERNARD M., MESSONNIER L. A., BENDAHAN D. “Impaired muscle force production and higher fatigability in a mouse model of sickle cell disease.”. Blood Cells, Molecules & Diseases [En ligne]. 2017. Vol. 63, p. 37-44. Disponible sur : < http://dx.doi.org/10.1016/j.bcmd.2017.01.004 > (consulté le no date)
    Résumé : Skeletal muscle function has been scarcely investigated in sickle cell disease (SCD) so that the corresponding impact of sickle hemoglobin is still a matter of debate. The purpose of this study was to investigate muscle force production and fatigability in SCD and to identify whether exercise intensity could have a modulatory effect. Ten homozygous sickle cell (HbSS), ten control (HbAA) and ten heterozygous (HbAS) mice were submitted to two stimulation protocols (moderate and intense) to assess force production and fatigability. We showed that specific maximal tetanic force was lower in HbSS mice as compared to other groups. At the onset of the stimulation period, peak force was reduced in HbSS and HbAS mice as compared to HbAA mice. Contrary to the moderate protocol, the intense stimulation protocol was associated with a larger decrease in peak force and rate of force development in HbSS mice as compared to HbAA and HbAS mice. These findings provide in vivo evidence of impaired muscle force production and resistance to fatigue in SCD. These changes are independent of muscle mass. Moreover, SCD is associated with muscle fatigability when exercise intensity is high.
    Mots-clés : crmbm, Exercise intensity, Muscle mass, Muscle volume, Rate of force development.


  • CHATEL B., MESSONNIER L. A., BENDAHAN D. “Exacerbated in vivo metabolic changes suggestive of a spontaneous muscular vaso-occlusive crisis in exercising muscle of a sickle cell mouse.”. Blood Cells, Molecules, and Diseases [En ligne]. 2017. Vol. 65, p. 56-59. Disponible sur : < http://dx.doi.org/10.1016/j.bcmd.2017.05.006 >
    Résumé : While sickle cell disease (SCD) is characterized by frequent vaso-occlusive crisis (VOC), no direct observation of such an event in skeletal muscle has been performed in vivo. The present study reported exacerbated in vivo metabolic changes suggestive of a spontaneous muscular VOC in exercising muscle of a sickle cell mouse. Using magnetic resonance spectroscopy of phosphorus 31, phosphocreatine and inorganic phosphate concentrations and intramuscular pH were measured throughout two standardized protocols of rest – exercise – recovery at two different intensities in ten SCD mice. Among these mice, one single mouse presented divergent responses. A statistical analysis (based on confidence intervals) revealed that this single mouse presented slower phosphocreatine resynthesis and inorganic phosphate disappearance during the post-stimulation recovery of one of the protocols, what could suggest an ischemia. This study described, for the first time in a sickle cell mouse in vivo, exacerbated metabolic changes triggered by an exercise session that would be suggestive of a live observation of a muscular VOC. However, no evidence of a direct cause-effect relationship between exercise and VOC has been put forth.
    Mots-clés : crmbm, HbS polymerization, Magnetic resonance spectroscopy of phosphorus 31, Physical activity, Red blood cell sickling.

  • DESROIS M., LAN C., MOVASSAT J., BERNARD M. “Reduced up-regulation of the nitric oxide pathway and impaired endothelial and smooth muscle functions in the female type 2 diabetic goto-kakizaki rat heart.”. Nutrition & Metabolism [En ligne]. 2017. Vol. 14, p. 6. Disponible sur : < http://dx.doi.org/10.1186/s12986-016-0157-z > (consulté le no date)
    Résumé : BACKGROUND: Type 2 diabetes is associated with greater relative risk of cardiovascular diseases in women than in men, which is not well understood. Consequently, we have investigated if male and female displayed differences in cardiac function, energy metabolism, and endothelial function which could contribute to increased cardiovascular complications in type 2 diabetic female. METHODS: Male and female Control and type 2 diabetic Goto-Kakizaki (GK) isolated rat hearts were perfused during 28 min with a physiological buffer before freeze-clamping for biochemical assays. High energy phosphate compounds and intracellular pH were followed using (31)P magnetic resonance spectroscopy with simultaneous measurement of contractile function. Nitric oxide (NO) pathway and endothelium-dependent and independent vasodilatations were measured as indexes of endothelial function. Results were analyzed via two-way ANOVA, p < 0.05 was considered as statistically significant. RESULTS: Myocardial function was impaired in male and female diabetic versus Control groups (p < 0.05) without modification of energy metabolism. Coronary flow was decreased in both diabetic versus Control groups but to a higher extent in female GK versus male GK rat hearts (p < 0.05). NO production was up-regulated in diabetic groups but to a less extent in female GK rat hearts (p < 0.05). Endothelium-dependent and independent vasodilatations were impaired in female GK rat compared with male GK (p < 0.05) and female Control (p < 0.05) rat hearts. CONCLUSIONS: We reported here an endothelial damage characterized by a reduced up-regulation of the NO pathway and impaired endothelial and smooth muscle functions, and coronary flow rates in the female GK rat hearts while energy metabolism was normal. Whether these results are related to the higher risk of cardiovascular complications among type 2 diabetic female needs to be further elicited in the future.
    Mots-clés : Cardiac function, crmbm, Endothelial function, Energy Metabolism, Gender differences, Type 2 diabetic heart.

  • FOURé A., BENDAHAN D. “Is Branched-Chain Amino Acids Supplementation an Efficient Nutritional Strategy to Alleviate Skeletal Muscle Damage? A Systematic Review.”. Nutrients [En ligne]. 2017. Vol. 9, n°10,. Disponible sur : < http://dx.doi.org/10.3390/nu9101047 > (consulté le no date)
    Résumé : Amino acids and more precisely, branched-chain amino acids (BCAAs), are usually consumed as nutritional supplements by many athletes and people involved in regular and moderate physical activities regardless of their practice level. BCAAs have been initially shown to increase muscle mass and have also been implicated in the limitation of structural and metabolic alterations associated with exercise damage. This systematic review provides a comprehensive analysis of the literature regarding the beneficial effects of BCAAs supplementation within the context of exercise-induced muscle damage or muscle injury. The potential benefit of a BCAAs supplementation was also analyzed according to the supplementation strategy-amount of BCAAs, frequency and duration of the supplementation-and the extent of muscle damage. The review protocol was registered prospectively with Prospective Register for Systematic Reviews (registration number CRD42017073006) and followed Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. Literature search was performed from the date of commencement until August 2017 using four online databases (Medline, Cochrane library, Web of science and ScienceDirect). Original research articles: (i) written in English; (ii) describing experiments performed in Humans who received at least one oral BCAAs supplementation composed of leucine, isoleucine and valine mixture only as a nutritional strategy and (iii) reporting a follow-up of at least one day after exercise-induced muscle damage, were included in the systematic review analysis. Quality assessment was undertaken independently using the Quality Criteria Checklist for Primary Research. Changes in indirect markers of muscle damage were considered as primary outcome measures. Secondary outcome measures were the extent of change in indirect markers of muscle damage. In total, 11 studies were included in the analysis. A high heterogeneity was found regarding the different outcomes of these studies. The risk of bias was moderate considering the quality ratings were positive for six and neutral for three. Although a small number of studies were included, BCAAs supplementation can be efficacious on outcomes of exercise-induced muscle damage, as long as the extent of muscle damage was low-to-moderate, the supplementation strategy combined a high daily BCAAs intake (>200 mg kg(-1) day(-1)) for a long period of time (>10 days); it was especially effective if taken prior to the damaging exercise.
    Mots-clés : branched-chain amino acids (BCAAs), crmbm, exercise-induced muscle damage, nutritional strategy, skeletal muscle.

  • FOURé A., DUHAMEL G., VILMEN C., BENDAHAN D., JUBEAU M., GONDIN J. “Fast measurement of the quadriceps femoris muscle transverse relaxation time at high magnetic field using segmented echo-planar imaging.”. Journal of magnetic resonance imaging: JMRI [En ligne]. 2017. Vol. 45, n°2, p. 356-368. Disponible sur : < http://dx.doi.org/10.1002/jmri.25355 > (consulté le no date)
    Résumé : PURPOSE: To assess and validate a technique for transverse relaxation time (T2 ) measurements of resting and recovering skeletal muscle following exercise with a high temporal resolution and large volume coverage using segmented spin-echo echo-planar imaging (sSE-EPI). MATERIALS AND METHODS: Experiments were performed on a 3T magnetic resonance imaging (MRI) scanner using a multislice sSE-EPI technique applied at different echo times (TEs). T2 measurements were first validated in vitro in calibrated T2 phantoms (range: 25-152 ms) by comparing sSE-EPI, standard spin-echo (SE), and multislice multiecho (MSME) techniques (using a fitting procedure or a 2-TEs calculation). In vivo measurements of resting T2 quadriceps femoris (QF) muscle were performed with both sSE-EPI and MSME sequences. Finally, sSE-EPI was used to quantify T2 changes in recovering muscle after an exercise. RESULTS: T2 values measured in vitro with sSE-EPI were similar to those assessed with SE (P > 0.05). In vitro and in vivo T2 measurements obtained with sSE-EPI were independent of the T2 determination procedure (P > 0.05). In contrast, both in vitro and in vivo T2 values derived from MSME were significantly different when using 2-TEs calculation as compared to the fitting procedure (P < 0.05). sSE-EPI allowed the detection of increased T2 values in the QF muscle immediately after exercise (+14 ± 9%), while lower T2 values were recorded less than 2 min afterwards (P < 0.05). CONCLUSION: sSE-EPI sequence is a relevant method to monitor exercise-induced T2 changes of skeletal muscles over large volume coverage and to detect abnormal patterns of muscle activation. LEVEL OF EVIDENCE: 1 J. Magn. Reson. Imaging 2017;45:356-368.
    Mots-clés : crmbm, Exercise, MRI, skeletal muscle, spin-echo sequence, T2.


  • GIRARD O. M., CALLOT V., PREVOST V. H., ROBERT B., TASO M., RIBEIRO G., VARMA G., RANGWALA N., ALSOP D. C., DUHAMEL G. “Magnetization transfer from inhomogeneously broadened lines (ihMT): Improved imaging strategy for spinal cord applications.”. Magnetic Resonance in Medicine [En ligne]. 2017. Vol. 77, p. 581-591. Disponible sur : < http://dx.doi.org/10.1002/mrm.26134 >
    Résumé : Purpose Inhomogeneous magnetization transfer (ihMT) shows great promise for specific imaging of myelinated tissues. Whereas the ihMT technique has been previously applied in brain applications, the current report presents a strategy for cervical spinal cord (SC) imaging free of cerebrospinal fluid (CSF) pulsatility artifacts. Methods A pulsed ihMT preparation was combined with a single-shot HASTE readout. Electrocardiogram (ECG) synchronization was used to acquire all images during the quiescent phase of SC motion. However ihMT signal quantification errors may occur when a variable recovery delay is introduced in the sequence as a consequence of variable cardiac cycle. A semiautomatic retrospective correction algorithm, based on repetition time (TR) -matching, is proposed to correct for signal variations of long T1-components (e.g., CSF). Results The proposed strategy combining ECG synchronization and retrospective data pairing led to clean SC images free of CSF artifacts. Lower variability of the ihMT metrics were obtained with the correction algorithm, and allowed for shorter TR to be used, hence improving signal-to-noise ratio efficiency. Conclusion The proposed methodology enabled faster acquisitions, while offering robust ihMT quantification and exquisite SC image quality. This opens great perspectives for widening the in vivo characterization of SC physiopathology using MRI, such as studying white matter tracts microstructure or impairment in degenerative pathologies. Magn Reson Med, 2016. © 2016 Wiley Periodicals, Inc.
    Mots-clés : crmbm, CSF pulsatility, ECG synchronization, ihMT, inhomogeneous magnetization transfer, motion correction, myelin, spinal cord, white matter.

  • LAROCHE M., ALMERAS L., PECCHI E., BECHAH Y., RAOULT D., VIOLA A., PAROLA P. “MALDI-TOF MS as an innovative tool for detection of Plasmodium parasites in Anopheles mosquitoes.”. Malaria Journal [En ligne]. 2017. Vol. 16, n°1, p. 5. Disponible sur : < http://dx.doi.org/10.1186/s12936-016-1657-z > (consulté le no date)
    Résumé : BACKGROUND: Malaria is still a major public health issue worldwide, and one of the best approaches to fight the disease remains vector control. The current methods for mosquito identification include morphological methods that are generally time-consuming and require expertise, and molecular methods that require laboratory facilities with relatively expensive running costs. Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology, routinely used for bacterial identification, has recently emerged in the field of entomology. The aim of the present study was to assess whether MALDI-TOF MS could successfully distinguish Anopheles stephensi mosquitoes according to their Plasmodium infection status. METHODS: C57BL/6 mice experimentally infected with Plasmodium berghei were exposed to An. stephensi bites. For the determination of An. stephensi infection status, mosquito cephalothoraxes were dissected and submitted to mass spectrometry analyses and DNA amplification for molecular analysis. Spectra were grouped according to mosquitoes' infection status and spectra quality was validated based on intensity and reproducibility within each group. The in-lab MALDI-TOF MS arthropod reference spectra database, upgraded with representative spectra from both groups (infected/non-infected), was subsequently queried blindly with cephalothorax spectra from specimens of both groups. RESULTS: The MALDI TOF MS profiles generated from protein extracts prepared from the cephalothorax of An. stephensi allowed distinction between infected and uninfected mosquitoes. Correct classification was obtained in blind test analysis for (79/80) 98.75% of all mosquitoes tested. Only one of 80 specimens, an infected mosquito, was misclassified in the blind test analysis. CONCLUSIONS: Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry appears to be a promising, rapid and reliable tool for the epidemiological surveillance of Anopheles vectors, including their identification and their infection status.
    Mots-clés : crmbm.


  • LEPORQ B., TROTER A. L., FUR Y. L., SALORT-CAMPANA E., GUYE M., BEUF O., ATTARIAN S., BENDAHAN D. “Combined quantification of fatty infiltration, T1-relaxation times and T2*-relaxation times in normal-appearing skeletal muscle of controls and dystrophic patients.”. Magnetic Resonance Materials in Physics, Biology and Medicine [En ligne]. 2017. Vol. 30, n°4, p. 407-415. Disponible sur : < http://dx.doi.org/10.1007/s10334-017-0616-1 >
    Résumé : ObjectivesTo evaluate the combination of a fat–water separation method with an automated segmentation algorithm to quantify the intermuscular fatty-infiltrated fraction, the relaxation times, and the microscopic fatty infiltration in the normal-appearing muscle.Materials and methodsMR acquisitions were performed at 1.5T in seven patients with facio-scapulo-humeral dystrophy and eight controls. Disease severity was assessed using commonly used scales for the upper and lower limbs. The fat–water separation method provided proton density fat fraction (PDFF) and relaxation times maps (T2* and T1). The segmentation algorithm distinguished adipose tissue and normal-appearing muscle from the T2* map and combined active contours, a clustering analysis, and a morphological closing process to calculate the index of fatty infiltration (IFI) in the muscle compartment defined as the relative amount of pixels with the ratio between the number of pixels within IMAT and the total number of pixels (IMAT + normal appearing muscle).ResultsIn patients, relaxation times were longer and a larger fatty infiltration has been quantified in the normal-appearing muscle. T2* and PDFF distributions were broader. The relaxation times were correlated to the Vignos scale whereas the microscopic fatty infiltration was linked to the Medwin-Gardner-Walton scale. The IFI was linked to a composite clinical severity scale gathering the whole set of scales.ConclusionThe MRI indices quantified within the normal-appearing muscle could be considered as potential biomarkers of dystrophies and quantitatively illustrate tissue alterations such as inflammation and fatty infiltration.
    Mots-clés : crmbm, Magnetic Resonance Imaging, Muscle dystrophies, Segmentation.


  • LUTZ N. W., BERNARD M. “Multiparametric quantification of thermal heterogeneity within aqueous materials by water 1H NMR spectroscopy: Paradigms and algorithms.”. PLOS ONE [En ligne]. 2017. Vol. 12, n°5, p. e0178431. Disponible sur : < http://dx.doi.org/10.1371/journal.pone.0178431 >
    Résumé : Processes involving heat generation and dissipation play an important role in the performance of numerous materials. The behavior of (semi-)aqueous materials such as hydrogels during production and application, but also properties of biological tissue in disease and therapy (e.g., hyperthermia) critically depend on heat regulation. However, currently available thermometry methods do not provide quantitative parameters characterizing the overall temperature distribution within a volume of soft matter. To this end, we present here a new paradigm enabling accurate, contactless quantification of thermal heterogeneity based on the line shape of a water proton nuclear magnetic resonance (1H NMR) spectrum. First, the 1H NMR resonance from water serving as a "temperature probe" is transformed into a temperature curve. Then, the digital points of this temperature profile are used to construct a histogram by way of specifically developed algorithms. We demonstrate that from this histogram, at least eight quantitative parameters describing the underlying statistical temperature distribution can be computed: weighted median, weighted mean, standard deviation, range, mode(s), kurtosis, skewness, and entropy. All mathematical transformations and calculations are performed using specifically programmed EXCEL spreadsheets. Our new paradigm is helpful in detailed investigations of thermal heterogeneity, including dynamic characteristics of heat exchange at sub-second temporal resolution.
    Mots-clés : Algorithms, crmbm, Distribution curves, Entropy, Gels, NMR spectroscopy, Nuclear magnetic resonance, Skewness, Statistical distributions.


  • MAAROUF A., AUDOIN B., PARIOLLAUD F., GHERIB S., RICO A., SOULIER E., CONFORT-GOUNY S., GUYE M., SCHAD L., PELLETIER J., RANJEVA J. - P., ZAARAOUI W. “Increased total sodium concentration in gray matter better explains cognition than atrophy in MS.”. Neurology [En ligne]. 2017. Vol. 88, n°3, p. 289-295. Disponible sur : < http://dx.doi.org/10.1212/WNL.0000000000003511 >
    Résumé : Objective: To investigate whether brain total sodium accumulation assessed by 23Na MRI is associated with cognitive deficit in relapsing-remitting multiple sclerosis (RRMS). Methods: Eighty-nine participants were enrolled in the study (58 patients with RRMS with a disease duration ≤10 years and 31 matched healthy controls). Patients were classified as cognitively impaired if they failed at least 2 tasks on the Brief Repeatable Battery. MRI was performed at 3T using 23Na MRI to obtain total sodium concentration (TSC) in the different brain compartments (lesions, normal-appearing white matter [NAWM], gray matter [GM]) and 1H- magnetization-prepared rapid gradient echo to assess GM atrophy (GM fraction). Results: The mean disease duration was 3.1 years and the median Expanded Disability Status Scale score was 1 (range 0–4.5). Thirty-seven patients were classified as cognitively preserved and 21 as cognitively impaired. TSC was increased in GM and NAWM in cognitively impaired patients compared to cognitively preserved patients and healthy controls. Voxel-wise analysis demonstrated that sodium accumulation was mainly located in the neocortex in cognitively impaired patients. Regression analysis evidenced than the 2 best independent predictors of cognitive impairment were GM TSC and age. Receiver operating characteristic analyses demonstrated that sensitivity and specificity of the GM TSC to classify patients according to their cognitive status were 76% and 71%, respectively. Conclusions: This study provides 2 main findings. (1) In RRMS, total sodium accumulation in the GM is better associated with cognitive impairment than GM atrophy; and (2) total sodium accumulation in patients with cognitive impairment is mainly located in the neocortex.
    Mots-clés : crmbm.

  • MCHINDA S., VARMA G., PREVOST V. H., LE TROTER A., RAPACCHI S., GUYE M., PELLETIER J., RANJEVA J. - P., ALSOP D. C., DUHAMEL G., GIRARD O. M. “Whole brain inhomogeneous magnetization transfer (ihMT) imaging: Sensitivity enhancement within a steady-state gradient echo sequence.”. Magnetic Resonance in Medicine [En ligne]. 2017. Disponible sur : < http://dx.doi.org/10.1002/mrm.26907 > (consulté le no date)
    Résumé : PURPOSE: To implement, characterize, and optimize an interleaved inhomogeneous magnetization transfer (ihMT) gradient echo sequence allowing for whole-brain imaging within a clinically compatible scan time. THEORY AND METHODS: A general framework for ihMT modelling was developed based on the Provotorov theory of radiofrequency saturation, which accounts for the dipolar order underpinning the ihMT effect. Experimental studies and numerical simulations were performed to characterize and optimize the ihMT-gradient echo dependency with sequence timings, saturation power, and offset frequency. The protocol was optimized in terms of maximum signal intensity and the reproducibility assessed for a nominal resolution of 1.5 mm isotropic. All experiments were performed on healthy volunteers at 1.5T. RESULTS: An important mechanism driving signal optimization and leading to strong ihMT signal enhancement that relies on the dynamics of radiofrequency energy deposition has been identified. By taking advantage of the delay allowed for readout between ihMT pulse bursts, it was possible to boost the ihMT signal by almost 2-fold compared to previous implementation. Reproducibility of the optimal protocol was very good, with an intra-individual error < 2%. CONCLUSION: The proposed sensitivity-boosted and time-efficient steady-state ihMT-gradient echo sequence, implemented and optimized at 1.5T, allowed robust high-resolution 3D ihMT imaging of the whole brain within a clinically compatible scan time. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
    Mots-clés : crmbm, dipolar order, dual frequency RF saturation, ihMT, inhomogeneous magnetization transfer, magnetization transfer model, myelin, Provotorov theory of radiofrequency saturation.


  • PREVOST V. H., GIRARD O. M., MCHINDA S., VARMA G., ALSOP D. C., DUHAMEL G. “Optimization of inhomogeneous magnetization transfer (ihMT) MRI contrast for preclinical studies using dipolar relaxation time (T1D) filtering.”. NMR in Biomedicine [En ligne]. 2017. Vol. 30, n°6,. Disponible sur : < http://dx.doi.org/10.1002/nbm.3706 >

  • RASOANANDRIANINA H., GRAPPERON A. - M., TASO M., GIRARD O. M., DUHAMEL G., GUYE M., RANJEVA J. - P., ATTARIAN S., VERSCHUEREN A., CALLOT V. “Region-specific impairment of the cervical spinal cord (SC) in amyotrophic lateral sclerosis: A preliminary study using SC templates and quantitative MRI (diffusion tensor imaging/inhomogeneous magnetization transfer).”. NMR in biomedicine [En ligne]. 2017. Disponible sur : < http://dx.doi.org/10.1002/nbm.3801 > (consulté le no date)
    Résumé : In this preliminary study, our objective was to investigate the potential of high-resolution anatomical imaging, diffusion tensor imaging (DTI) and conventional/inhomogeneous magnetization transfer imaging [magnetization transfer (MT)/inhomogeneous magnetization transfer (ihMT)] at 3 T, analyzed with template-extracted regions of interest, to measure the atrophy and structural changes of white (WM) and gray (GM) matter spinal cord (SC) occurring in patients with amyotrophic lateral sclerosis (ALS). Ten patients with ALS and 20 age-matched healthy controls were recruited. SC GM and WM areas were automatically segmented using dedicated templates. Atrophy indices were evaluated from T2 *-weighted images at each vertebral level from cervical C1 to C6. DTI and ihMT metrics were quantified within the corticospinal tract (CST), posterior sensory tract (PST) and anterior GM (aGM) horns at the C2 and C5 levels. Clinical disabilities of patients with ALS were evaluated using the Revised ALS Functional Rating Scale, upper motor neuron (UMN) and Medical Research Council scorings, and correlated with MR metrics. Compared with healthy controls, GM and WM atrophy was observed in patients with ALS, especially at lower cervical levels, where a strong correlation was also observed between GM atrophy and the UMN score (R = -0.75, p = 0.05 at C6). Interestingly, a significant decrease in ihMT ratio was found in all regions of interest (p < 0.0008), fractional anisotropy (FA) and MT ratios decreased significantly in CST, especially at C5 (p < 0.005), and λ// (axial diffusivity) decreased significantly in CST (p = 0.0004) and PST (p = 0.003) at C2. Strong correlations between MRI metrics and clinical scores were also found (0.47 < |R| < 0.87, p < 0.05). Altogether, these preliminary results suggest that high-resolution anatomical imaging and ihMT imaging, in addition to DTI, are valuable for the characterization of SC tissue impairment in ALS. In this study, in addition to an important SC WM demyelination, we also observed, for the first time in ALS, impairments of cervical aGM.
    Mots-clés : ALS, crmbm, diffusion tensor imaging, GM atrophy, inhomogeneous magnetization transfer, motor neuron, spinal cord, spinal cord templates.

  • RIDLEY B., MARCHI A., WIRSICH J., SOULIER E., CONFORT-GOUNY S., SCHAD L., BARTOLOMEI F., RANJEVA J. - P., GUYE M., ZAARAOUI W. “Brain sodium MRI in human epilepsy: Disturbances of ionic homeostasis reflect the organization of pathological regions.”. NeuroImage [En ligne]. 2017. Vol. 157, p. 173-183. Disponible sur : < http://dx.doi.org/10.1016/j.neuroimage.2017.06.011 > (consulté le no date)
    Résumé : In light of technical advancements supporting exploration of MR signals other than (1)H, sodium ((23)Na) has received attention as a marker of ionic homeostasis and cell viability. Here, we evaluate for the first time the possibility that (23)Na-MRI is sensitive to pathological processes occurring in human epilepsy. A normative sample of 27 controls was used to normalize regions of interest (ROIs) from 1424 unique brain locales on quantitative (23)Na-MRI and high-resolution (1)H-MPRAGE images. ROIs were based on intracerebral electrodes in ten patients undergoing epileptic network mapping. The stereo-EEG gold standard was used to define regions as belonging to primarily epileptogenic, secondarily irritative and to non-involved regions. Estimates of total sodium concentration (TSC) on (23)Na-MRI and cerebrospinal fluid (CSF) on (1)H imaging were extracted for each patient ROI, and normalized against the same region in controls. ROIs with disproportionate CSF contributions (ZCSF≥1.96) were excluded. TSC levels were found to be elevated in patients relative to controls except in one patient, who suffered non-convulsive seizures during the scan, in whom we found reduced TSC levels. In the remaining patients, an ANOVA (F1100= 12.37, p<0.0001) revealed a highly significant effect of clinically-defined zones (F1100= 11.13, p<0.0001), with higher normalized TSC in the epileptogenic zone relative to both secondarily irritative (F1100= 11, p=0.0009) and non-involved regions (F1100= 17.8, p<0.0001). We provide the first non-invasive, in vivo evidence of a chronic TSC elevation alongside ZCSF levels within the normative range, associated with the epileptogenic region even during the interictal period in human epilepsy, and the possibility of reduced TSC levels due to seizure. In line with modified homeostatic mechanisms in epilepsy - including altered mechanisms underlying ionic gating, clearance and exchange - we provide the first indication of (23)Na-MRI as an assay of altered sodium concentrations occurring in epilepsy associated with the organization of clinically relevant divisions of pathological cortex.
    Mots-clés : Cortical localisation, crmbm, epilepsy, Epilepsy surgery, Intracranial EEG, Ionic imaging, Sodium MRI.

  • RIDLEY B., WIRSICH J., BETTUS G., RODIONOV R., MURTA T., CHAUDHARY U., CARMICHAEL D., THORNTON R., VULLIEMOZ S., MCEVOY A., WENDLING F., BARTOLOMEI F., RANJEVA J. - P., LEMIEUX L., GUYE M. “Simultaneous Intracranial EEG-fMRI Shows Inter-Modality Correlation in Time-Resolved Connectivity Within Normal Areas but Not Within Epileptic Regions.”. Brain Topography [En ligne]. 2017. Disponible sur : < http://dx.doi.org/10.1007/s10548-017-0551-5 > (consulté le no date)
    Résumé : For the first time in research in humans, we used simultaneous icEEG-fMRI to examine the link between connectivity in haemodynamic signals during the resting-state (rs) and connectivity derived from electrophysiological activity in terms of the inter-modal connectivity correlation (IMCC). We quantified IMCC in nine patients with drug-resistant epilepsy (i) within brain networks in 'healthy' non-involved cortical zones (NIZ) and (ii) within brain networks involved in generating seizures and interictal spikes (IZ1) or solely spikes (IZ2). Functional connectivity (h (2) ) estimates for 10 min of resting-state data were obtained between each pair of electrodes within each clinical zone for both icEEG and fMRI. A sliding window approach allowed us to quantify the variability over time of h (2) (vh (2)) as an indicator of connectivity dynamics. We observe significant positive IMCC for h (2) and vh (2), for multiple bands in the NIZ only, with the strongest effect in the lower icEEG frequencies. Similarly, intra-modal h (2) and vh (2) were found to be differently modified as a function of different epileptic processes: compared to NIZ, [Formula: see text] was higher in IZ1, but lower in IZ2, while [Formula: see text] showed the inverse pattern. This corroborates previous observations of inter-modal connectivity discrepancies in pathological cortices, while providing the first direct invasive and simultaneous comparison in humans. We also studied time-resolved FC variability multimodally for the first time, finding that IZ1 shows both elevated internal [Formula: see text] and less rich dynamical variability, suggesting that its chronic role in epileptogenesis may be linked to greater homogeneity in self-sustaining pathological oscillatory states.
    Mots-clés : connectivity, crmbm, Dynamic connectivity, Focal epilepsy, Multimodal imaging, Resting-state.

  • WEGRZYK J., RANJEVA J. - P., FOURé A., KAVOUNOUDIAS A., VILMEN C., MATTEI J. - P., GUYE M., MAFFIULETTI N. A., PLACE N., BENDAHAN D., GONDIN J. “Specific brain activation patterns associated with two neuromuscular electrical stimulation protocols.”. Scientific Reports [En ligne]. 2017. Vol. 7, n°1, p. 2742. Disponible sur : < http://dx.doi.org/10.1038/s41598-017-03188-9 > (consulté le no date)
    Résumé : The influence of neuromuscular electrical stimulation (NMES) parameters on brain activation has been scarcely investigated. We aimed at comparing two frequently used NMES protocols - designed to vary in the extent of sensory input. Whole-brain functional magnetic resonance imaging was performed in sixteen healthy subjects during wide-pulse high-frequency (WPHF, 100 Hz-1 ms) and conventional (CONV, 25 Hz-0.05 ms) NMES applied over the triceps surae. Each protocol included 20 isometric contractions performed at 10% of maximal force. Voluntary plantar flexions (VOL) were performed as control trial. Mean force was not different among the three protocols, however, total current charge was higher for WPHF than for CONV. All protocols elicited significant activations of the sensorimotor network, cerebellum and thalamus. WPHF resulted in lower deactivation in the secondary somatosensory cortex and precuneus. Bilateral thalami and caudate nuclei were hyperactivated for CONV. The modulation of the NMES parameters resulted in differently activated/deactivated regions related to total current charge of the stimulation but not to mean force. By targeting different cerebral brain regions, the two NMES protocols might allow for individually-designed rehabilitation training in patients who can no longer execute voluntary movements.
    Mots-clés : crmbm.

  • WIRSICH J., RIDLEY B., BESSON P., JIRSA V., BéNAR C., RANJEVA J. - P., GUYE M. “Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity.”. NeuroImage [En ligne]. 2017. Disponible sur : < http://dx.doi.org/10.1016/j.neuroimage.2017.08.055 > (consulté le no date)
    Résumé : While averaged dynamics of brain function are known to estimate the underlying structure, the exact relationship between large-scale function and structure remains an unsolved issue in network neuroscience. These complex functional dynamics, measured by EEG and fMRI, are thought to arise from a shared underlying structural architecture, which can be measured by diffusion MRI (dMRI). While simulation and data transformation (e.g. graph theory measures) have been proposed to refine the understanding of the underlying function-structure relationship, the potential complementary and/or independent contribution of EEG and fMRI to this relationship is still poorly understood. As such, we explored this relationship by analyzing the function-structure correlation in fourteen healthy subjects with simultaneous resting-state EEG-fMRI and dMRI acquisitions. We show that the combination of EEG and fMRI connectivity better explains dMRI connectivity and that this represents a genuine model improvement over fMRI-only models for both group-averaged connectivity matrices and at the individual level. Furthermore, this model improves the prediction within each resting-state network. The best model fit to underlying structure is mediated by fMRI and EEG-δ connectivity in combination with Euclidean distance and interhemispheric connectivity with more local contributions of EEG-γ at the scale of resting state networks. This highlights that the factors mediating the relationship between functional and structural metrics of connectivity are context and scale dependent, influenced by topological, geometric and architectural features. It also suggests that fMRI studies employing simultaneous EEG measures may characterize additional and essential parts of the underlying neuronal activity of the resting-state, which might be of special interest for both clinical studies and the investigation of resting-state dynamics.
    Mots-clés : Brain connectivity, Connectome, crmbm, Multimodal, Network theory.

2016

Journal Article

  • ABDESSELAM I., DUTOUR A., KOBER F., ANCEL P., BEGE T., DARMON P., LESAVRE N., BERNARD M., GABORIT B. “Time Course of Change in Ectopic Fat Stores After Bariatric Surgery.”. Journal of the American College of Cardiology [En ligne]. 2016. Vol. 67, n°1, p. 117-119. Disponible sur : < http://dx.doi.org/10.1016/j.jacc.2015.10.052 > (consulté le no date)

  • BAL-THEOLEYRE L., LALANDE A., KOBER F., GIORGI R., COLLART F., PIQUET P., HABIB G., AVIERINOS J. - F., BERNARD M., GUYE M., JACQUIER A. “Aortic Function's Adaptation in Response to Exercise-Induced Stress Assessing by 1.5T MRI: A Pilot Study in Healthy Volunteers.”. PloS One [En ligne]. 2016. Vol. 11, n°6, p. e0157704. Disponible sur : < http://dx.doi.org/10.1371/journal.pone.0157704 > (consulté le no date)
    Résumé : AIM: Evaluation of the aortic "elastic reserve" might be a relevant marker to assess the risk of aortic event. Our aim was to compare regional aortic elasticity at rest and during supine bicycle exercise at 1.5 T MRI in healthy individuals. METHODS: Fifteen volunteers (8 men), with a mean age of 29 (23-41) years, completed the entire protocol. Images were acquired immediately following maximal exercise. Retrospective cine sequences were acquired to assess compliance, distensibility, maximum rates of systolic distension and diastolic recoil at four different locations: ascending aorta, proximal descending aorta, distal descending aorta and aorta above the coeliac trunk level. Segmental aortic pulse wave velocity (PWV) was assessed by through plane velocity-encoded MRI. RESULTS: Exercise induced a significant decrease of aortic compliance and distensibility, and a significant increase of the absolute values of maximum rates of systolic distension and diastolic recoil at all sites (p<10-3). At rest and during stress, ascending aortic compliance was statistically higher compared to the whole descending aorta (p≤0.0007). We found a strong correlation between the rate pressure product and aortic distensibility at all sites (r = - 0.6 to -0.75 according to the site, p<10-4). PWV measured at the proximal and distal descending aorta increased significantly during stress (p = 0.02 and p = 0.008, respectively). CONCLUSION: Assessment of regional aortic function during exercise is feasible using MRI. During stress, aortic elasticity decreases significantly in correlation with an increase of the PWV. Further studies are required to create thresholds for ascending aorta dysfunction among patients with aneurysms, and to monitor the impact of medication on aortic remodeling.
    Mots-clés : Adaptation, Physiological, Adult, Aorta, Aorta, Thoracic, crmbm, Diastole, Elasticity, Exercise, Female, Healthy Volunteers, Humans, Magnetic Resonance Imaging, Male, Pilot Projects, Pulse Wave Analysis, Stress, Physiological, Supine Position, Systole, Vascular Stiffness.

  • BÉCHIR N., PECCHI E., VILMEN C., LE FUR Y., AMTHOR H., BERNARD M., BENDAHAN D., GIANNESINI B. “ActRIIB blockade increases force-generating capacity and preserves energy supply in exercising mdx mouse muscle in vivo.”. FASEB journal: official publication of the Federation of American Societies for Experimental Biology [En ligne]. 2016. Vol. 30, n°10, p. 3551-3562. Disponible sur : < http://dx.doi.org/10.1096/fj.201600271RR > (consulté le no date)
    Résumé : Postnatal blockade of the activin type IIB receptor (ActRIIB) represents a promising therapeutic strategy for counteracting dystrophic muscle wasting. However, its impact on muscle function and bioenergetics remains poorly documented in physiologic conditions. We have investigated totally noninvasively the effect of 8-wk administration of either soluble ActRIIB signaling inhibitor (sActRIIB-Fc) or vehicle PBS (control) on gastrocnemius muscle force-generating capacity, energy metabolism, and anatomy in dystrophic mdx mice using magnetic resonance (MR) imaging and dynamic [(31)P]-MR spectroscopy ([(31)P]-MRS) in vivo ActRIIB inhibition increased muscle volume (+33%) without changing fiber-type distribution, and increased basal animal oxygen consumption (+22%) and energy expenditure (+23%). During an in vivo standardized fatiguing exercise, maximum and total absolute contractile forces were larger (+40 and 24%, respectively) in sActRIIB-Fc treated animals, whereas specific force-generating capacity and fatigue resistance remained unaffected. Furthermore, sActRIIB-Fc administration did not alter metabolic fluxes, ATP homeostasis, or contractile efficiency during the fatiguing bout of exercise, although it dramatically reduced the intrinsic mitochondrial capacity for producing ATP. Overall, sActRIIB-Fc treatment increased muscle mass and strength without altering the fundamental weakness characteristic of dystrophic mdx muscle. These data support the clinical interest of ActRIIB blockade for reversing dystrophic muscle wasting.-Béchir, N., Pecchi, E., Vilmen, C., Le Fur, Y., Amthor, H., Bernard, M., Bendahan, D., Giannesini, B. ActRIIB blockade increases force-generating capacity and preserves energy supply in exercising mdx mouse muscle in vivo.
    Mots-clés : crmbm, Duchenne muscular dystrophy, Muscle Fatigue, myostatin inhibition, skeletal muscle hypertrophy.

  • BERNARD M., MAIXENT J. - M., GERBI A., LAN C., COZZONE P. J., PIERONI G., ARMAND M., COSTE T. C. “Dietary docosahexaenoic acid-enriched glycerophospholipids exert cardioprotective effects in ouabain-treated rats via physiological and metabolic changes.”. Food & Function [En ligne]. 2016. Vol. 7, n°2, p. 798-804. Disponible sur : < http://dx.doi.org/10.1039/c5fo01300c > (consulté le no date)
    Résumé : Docosahexaenoic acid (DHA) might prevent heart failure or optimise drug treatments by improving cardiac contraction. We investigated whether DHA-enriched avian glycerophospholipids (GPL-DHA) exert cardioprotection in ouabain-treated rats after 4 weeks of dietary supplementation with 10, 35 or 60 mg DHA per kg body weight versus none (DHA10, DHA35, DHA60 and control groups, respectively). The contractile responsiveness to different doses of ouabain (10(-7) to 10(-4) M), ouabain intoxication (at 3 × 10(-4) M), and relative variations in cardiac energy metabolism were determined using (31)P NMR in isolated perfused rat hearts. The fatty acid composition of cardiac membranes was analysed by gas chromatography. DHA accretion in the heart was dose-dependent (+8%, +30% and +45% for DHA10, DHA35 and DHA60, respectively). The cardiac phosphocreatine content significantly increased at the baseline in DHA35 (+45%) and DHA60 groups (+85%), and at the different doses of ouabain in the DHA60 group (+73% to 98%). The maximum positive inotropy achieved at 10(-4) M ouabain was significantly increased in all DHA groups versus control (+150%, +122.5% and +135% for DHA10, DHA35 and DHA60, respectively), and ouabain intoxication was delayed. The increase in myocardial phosphocreatine content and the improved efficacy of ouabain on myocardial contraction without toxicity suggest the potential of GPL-DHA as a dietary supplement or ingredient for functional food, and possibly as a co-treatment with digitalis drugs in humans.
    Mots-clés : crmbm.

  • BOUTIèRE C., REY C., ZAARAOUI W., LE TROTER A., RICO A., CRESPY L., ACHARD S., REUTER F., PARIOLLAUD F., WIRSICH J., ASQUINAZI P., CONFORT-GOUNY S., SOULIER E., GUYE M., PELLETIER J., RANJEVA J. - P., AUDOIN B. “Improvement of spasticity following intermittent theta burst stimulation in multiple sclerosis is associated with modulation of resting-state functional connectivity of the primary motor cortices.”. Multiple Sclerosis (Houndmills, Basingstoke, England) [En ligne]. 2016. Disponible sur : < http://dx.doi.org/10.1177/1352458516661640 > (consulté le no date)
    Résumé : BACKGROUND: Intermittent theta burst stimulation (iTBS) of the primary motor cortex improves transiently lower limbs spasticity in multiple sclerosis (MS). However, the cerebral mechanisms underlying this effect have never been investigated. OBJECTIVE: To assess whether modulation of spasticity induced by iTBS is underlined by functional reorganization of the primary motor cortices. METHODS: A total of 17 patients with MS suffering from lower limbs spasticity were randomized to receive real iTBS or sham iTBS during the first half of a 5-week indoor rehabilitation programme. Spasticity was assessed using the Modified Ashworth Scale and the Visual Analogue Scale at baseline, after the stimulation session and at the end of the rehabilitation programme. Resting-state functional magnetic resonance imaging (fMRI) was performed at the three time points, and brain functional networks topology was analysed using graph-theoretical approach. RESULTS: At the end of stimulation, improvement of spasticity was greater in real iTBS group than in sham iTBS group (p = 0.026). iTBS had a significant effect on the balance of the connectivity degree between the stimulated and the homologous primary motor cortex (p = 0.005). Changes in inter-hemispheric balance were correlated with improvement of spasticity (rho = 0.56, p = 0.015). CONCLUSION: This longitudinal resting-state fMRI study evidences that functional reorganization of the primary motor cortices may underlie the effect of iTBS on spasticity in MS.
    Mots-clés : connectivity, crmbm, intermittent theta burst stimulation, Multiple Sclerosis, primary motor cortex, resting state fMRI, spasticity.

  • BRICQ S., FRANDON J., BERNARD M., GUYE M., FINAS M., MARCADET L., MIQUEROL L., KOBER F., HABIB G., FAGRET D., JACQUIER A., LALANDE A. “Semiautomatic detection of myocardial contours in order to investigate normal values of the left ventricular trabeculated mass using MRI.”. Journal of magnetic resonance imaging: JMRI [En ligne]. 2016. Vol. 43, n°6, p. 1398-1406. Disponible sur : < http://dx.doi.org/10.1002/jmri.25113 > (consulté le no date)
    Résumé : PURPOSE: To propose, assess, and validate a semiautomatic method allowing rapid and reproducible measurement of trabeculated and compacted left ventricular (LV) masses from cardiac magnetic resonance imaging (MRI). MATERIALS AND METHODS: We developed a method to automatically detect noncompacted, endocardial, and epicardial contours. Papillary muscles were segmented using semiautomatic thresholding and were included in the compacted mass. Blood was removed from trabeculae using the same threshold tool. Trabeculated, compacted masses and ratio of noncompacted to compacted (NC:C) masses were computed. Preclinical validation was performed on four transgenic mice with hypertrabeculation of the LV (high-resolution cine imaging, 11.75T). Then analysis was performed on normal cine-MRI examinations (steady-state free precession [SSFP] sequences, 1.5T or 3T) obtained from 60 healthy participants (mean age 49 ± 16 years) with 10 men and 10 women for each of the following age groups: [20,39], [40,59], and [60,79]. Interobserver and interexamination segmentation reproducibility was assessed by using Bland-Altman analysis and by computing the correlation coefficient. RESULTS: In normal participants, noncompacted and compacted masses were 6.29 ± 2.03 g/m(2) and 62.17 ± 11.32 g/m(2) , respectively. The NC:C mass ratio was 10.26 ± 3.27%. Correlation between the two observers was from 0.85 for NC:C ratio to 0.99 for end-diastolic volume (P < 10(-5) ). The bias between the two observers was -1.06 ± 1.02 g/m(2) for trabeculated mass, -1.41 ± 2.78 g/m(2) for compacted mass, and -1.51 ± 1.77% for NC:C ratio. CONCLUSION: We propose a semiautomatic method based on region growing, active contours, and thresholding to calculate the NC:C mass ratio. This method is highly reproducible and might help in the diagnosis of LV noncompaction cardiomyopathy. J. Magn. Reson. Imaging 2016;43:1398-1406.
    Mots-clés : cardiovascular magnetic resonance imaging, crmbm, left ventricle, noncompaction, papillary muscles, trabeculae.

  • DE LEENER B., TASO M., COHEN-ADAD J., CALLOT V. “Segmentation of the human spinal cord.”. Magma (New York, N.Y.) [En ligne]. 2016. Vol. 29, n°2, p. 125-153. Disponible sur : < http://dx.doi.org/10.1007/s10334-015-0507-2 > (consulté le no date)
    Résumé : Segmenting the spinal cord contour is a necessary step for quantifying spinal cord atrophy in various diseases. Delineating gray matter (GM) and white matter (WM) is also useful for quantifying GM atrophy or for extracting multiparametric MRI metrics into specific WM tracts. Spinal cord segmentation in clinical research is not as developed as brain segmentation, however with the substantial improvement of MR sequences adapted to spinal cord MR investigations, the field of spinal cord MR segmentation has advanced greatly within the last decade. Segmentation techniques with variable accuracy and degree of complexity have been developed and reported in the literature. In this paper, we review some of the existing methods for cord and WM/GM segmentation, including intensity-based, surface-based, and image-based methods. We also provide recommendations for validating spinal cord segmentation techniques, as it is important to understand the intrinsic characteristics of the methods and to evaluate their performance and limitations. Lastly, we illustrate some applications in the healthy and pathological spinal cord. One conclusion of this review is that robust and automatic segmentation is clinically relevant, as it would allow for longitudinal and group studies free from user bias as well as reproducible multicentric studies in large populations, thereby helping to further our understanding of the spinal cord pathophysiology and to develop new criteria for early detection of subclinical evolution for prognosis prediction and for patient management. Another conclusion is that at the present time, no single method adequately segments the cord and its substructure in all the cases encountered (abnormal intensities, loss of contrast, deformation of the cord, etc.). A combination of different approaches is thus advised for future developments, along with the introduction of probabilistic shape models. Maturation of standardized frameworks, multiplatform availability, inclusion in large suite and data sharing would also ultimately benefit to the community.
    Mots-clés : crmbm, Gray matter, MRI, Segmentation, spinal cord, white matter.

  • DOCHE E., LECOCQ A., MAAROUF A., DUHAMEL G., SOULIER E., CONFORT-GOUNY S., RICO A., GUYE M., AUDOIN B., PELLETIER J., RANJEVA J. - P., ZAARAOUI W. “Hypoperfusion of the thalamus is associated with disability in relapsing remitting multiple sclerosis.”. Journal of Neuroradiology. Journal De Neuroradiologie [En ligne]. 2016. Disponible sur : < http://dx.doi.org/10.1016/j.neurad.2016.10.001 > (consulté le no date)
    Résumé : BACKGROUND: While gray matter (GM) perfusion abnormalities have been evidenced in multiple sclerosis (MS) patients, the relationships with disability still remain unclear. Considering that atrophy is known to impact on perfusion, we aimed to assess perfusion abnormalities in GM of MS patients, outside atrophic regions and investigate relationships with disability. METHODS: Brain perfusion of 23 relapsing remitting MS patients and 16 matched healthy subjects were assessed at 3T using the pseudo-continuous arterial spin labeling magnetic resonance imaging technique. In order to locate potential GM perfusion abnormalities in regions spared by atrophy, we combined voxelwise comparisons of GM cerebral blood flow (CBF) maps (cortex and deep GM) (P<0.005, FWE-corrected) and voxel-based-morphometry analysis (P<0.005, FDR-corrected) to exclude atrophic regions. Disability was assessed using the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite score (MSFC). RESULTS: In patients, significant GM hypoperfusion outside atrophic regions was depicted only in bilateral thalami. No other cluster was found to be hypoperfused compared to controls. Perfusion of thalami was correlated to MSFC (P=0.011, rho=0.523). A trend of correlation was found between perfusion of thalami and EDSS (P=0.061, rho=-0.396). CONCLUSION: In relapsing remitting MS, perfusion abnormalities in thalamic regions contribute to disability. These findings suggest that functional impairments of thalami, representing a major brain hub, may disturb various cerebral functions even before structural damage.
    Mots-clés : Atrophy, crmbm, Disability, Multiple Sclerosis, perfusion, Pseudo-continuous arterial spin labeling, Thalamus.

  • DONADIEU M., LE FUR Y., CONFORT-GOUNY S., LE TROTER A., GUYE M., RANJEVA J. - P. “Evidencing different neurochemical profiles between thalamic nuclei using high resolution 2D-PRESS semi-LASER (1)H-MRSI at 7 T.”. Magma (New York, N.Y.) [En ligne]. 2016. Disponible sur : < http://dx.doi.org/10.1007/s10334-016-0556-1 > (consulté le no date)
    Résumé : OBJECTIVE: To demonstrate that high resolution (1)H semi-LASER MRSI acquired at 7 T permits discrimination of metabolic patterns of different thalamic nuclei. MATERIALS AND METHODS: Thirteen right-handed healthy volunteers were explored at 7 T using a high-resolution 2D-semi-LASER (1)H-MRSI sequence to determine the relative levels of N-Acetyl Aspartate (NAA), choline (Cho) and creatine-phosphocreatine (Cr) in eight VOIs (volume <0.3 ml) centered on four different thalamic nuclei located on the Oxford thalamic connectivity atlas. Post-processing was done using the CSIAPO software. Chemical shift displacement of metabolites was evaluated on a phantom and correction factors were applied to in vivo data. RESULTS: The global assessment (ANOVA p < 0.05) of the neurochemical profiles (NAA, Cho and Cr levels) with thalamic nuclei and hemispheres as factors showed a significant global effect (F = 11.98, p < 0.0001), with significant effect of nucleus type (p < 0.0001) and hemisphere (p < 0.0001). Post hoc analyses showed differences in neurochemical profiles between the left and the right hemisphere (p < 0.05), and differences in neurochemical profiles between nuclei within each hemisphere (p < 0.05). CONCLUSION: For the first time, using high resolution 2D-PRESS semi-LASER (1)H-MRSI acquired at 7 T, we demonstrated that the neurochemical profiles were different between thalamic nuclei, and that these profiles were dependent on the brain hemisphere.
    Mots-clés : 1H-MRSI, Connectivity atlas, crmbm, Neurochemical profiles, Thalamic nuclei, Ultra high field.

  • DONADIEU M., LE FUR Y., LECOCQ A., MAUDSLEY A. A., GHERIB S., SOULIER E., CONFORT-GOUNY S., PARIOLLAUD F., RANJEVA M. - P., PELLETIER J., GUYE M., ZAARAOUI W., AUDOIN B., RANJEVA J. - P. “Metabolic voxel-based analysis of the complete human brain using fast 3D-MRSI: Proof of concept in multiple sclerosis.”. Journal of magnetic resonance imaging: JMRI [En ligne]. 2016. Vol. 44, n°2, p. 411-419. Disponible sur : < http://dx.doi.org/10.1002/jmri.25139 > (consulté le no date)
    Résumé : PURPOSE: To detect local metabolic abnormalities over the complete human brain in multiple sclerosis (MS) patients, we used optimized fast volumic echo planar spectroscopic imaging (3D-EPSI). MATERIALS AND METHODS: Weighted mean combination of two 3D-EPSI covering the whole brain acquired at 3T in AC-PC and AC-PC+15° axial planes was performed to obtain high-quality metabolite maps for five metabolites: N-acetyl aspartate (NAA), glutamate+glutamine (Glx), choline (Cho), myo-inositol (m-Ins), and creatine+phosphocreatine (tCr). After spatial normalization, maps from 19 patients suffering from relapsing-remitting MS were compared to 19 matched controls using statistical mapping analyses to determine the topography of metabolic abnormalities. Probabilistic white matter (WM) T2 lesion maps and gray matter (GM) atrophy maps were also generated. RESULTS: Two-group analysis of variance (ANOVA) (SPM8, P < 0.005, false discovery rate [FDR]-corrected P < 0.05 at the cluster level with age and sex as confounding covariates) comparing patients and controls matched for age and sex showed clusters of abnormal metabolite levels with 1) decreased NAA (around -15%) and Glx (around 20%) predominantly in GM within prefrontal cortices, motor cortices, bilateral thalami, and mesial temporal cortices in line with neuronal/neuro-astrocytic dysfunction; 2) increased m-Ins (around + 20%) inside WM T2 lesions and in the normal-appearing WM of temporal-occipital lobes, suggesting glial activation. CONCLUSION: We demonstrate the ability to noninvasively map over the complete brain-from vertex to cerebellum-with a validated sequence, the metabolic abnormalities associated with MS, for characterizing the topography of pathological processes affecting widespread areas of WM and GM and its functional impact. J. Magn. Reson. Imaging 2016;44:411-419.
    Mots-clés : crmbm, Inflammation, Multiple Sclerosis, neurodegeneration, proton magnetic resonance spectroscopic imaging, statistical mapping analysis, whole brain.

  • DUPONT S. M., DE LEENER B., TASO M., LE TROTER A., STIKOV N., CALLOT V., COHEN-ADAD J. “Fully-integrated framework for the segmentation and registration of the spinal cord white and gray matter.”. NeuroImage [En ligne]. 2016. Disponible sur : < http://dx.doi.org/10.1016/j.neuroimage.2016.09.026 > (consulté le no date)
    Résumé : The spinal cord white and gray matter can be affected by various pathologies such as multiple sclerosis, amyotrophic lateral sclerosis or trauma. Being able to precisely segment the white and gray matter could help with MR image analysis and hence be useful in further understanding these pathologies, and helping with diagnosis/prognosis and drug development. Up to date, white/gray matter segmentation has mostly been done manually, which is time consuming, induces a bias related to the rater and prevents large-scale multi-center studies. Recently, few methods have been proposed to automatically segment the spinal cord white and gray matter. However, no single method exists that combines the following criteria: (i) fully automatic, (ii) works on various MRI contrasts, (iii) robust towards pathology and (iv) freely available and open source. In this study we propose a multi-atlas based method for the segmentation of the spinal cord white and gray matter that addresses the previous limitations. Moreover, to study the spinal cord morphology, atlas-based approaches are increasingly used. These approaches rely on the registration of a spinal cord template to an MR image, however the registration usually doesn't take into account the spinal cord internal structure and thus lacks accuracy. In this study, we propose a new template registration framework that integrates the white and gray matter segmentation to account for the specific gray matter shape of each individual subject. Validation of segmentation was performed in 24 healthy subjects using T2⁎-weighted images, in 8 healthy subjects using diffusion weighted images (exhibiting inverted white-to-gray matter contrast compared to T2⁎-weighted), and in 5 patients with spinal cord injury. The template registration was validated in 24 subjects using T2⁎-weighted data. RESULTS: of automatic segmentation on T2⁎-weighted images was in close correspondence with the manual segmentation (Dice coefficient in the white/gray matter of 0.91/0.71 respectively). Similarly, good results were obtained in data with inverted contrast (diffusion-weighted image) and in patients. When compared to the classical template registration framework, the proposed framework that accounts for gray matter shape significantly improved the quality of the registration (comparing Dice coefficient in gray matter: p=9.5×10(-6)). While further validation is needed to show the benefits of the new registration framework in large cohorts and in a variety of patients, this study provides a fully-integrated tool for quantitative assessment of white/gray matter morphometry and template-based analysis. All the proposed methods are implemented in the Spinal Cord Toolbox (SCT), an open-source software for processing spinal cord multi-parametric MRI data.
    Mots-clés : Atlas-based analysis, crmbm, Gray matter, multi-parametric MRI, Registration, Segmentation, spinal cord.

  • DUTOUR A., ABDESSELAM I., ANCEL P., KOBER F., MRAD G., DARMON P., RONSIN O., PRADEL V., LESAVRE N., MARTIN J. C., JACQUIER A., LEFUR Y., BERNARD M., GABORIT B. “Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy.”. Diabetes, Obesity & Metabolism [En ligne]. 2016. Vol. 18, n°9, p. 882-891. Disponible sur : < http://dx.doi.org/10.1111/dom.12680 > (consulté le no date)
    Résumé : AIM: To conduct a prospective randomized trial to investigate the effect of glucagon-like peptide-1 (GLP-1) analogues on ectopic fat stores. METHODS: A total of 44 obese subjects with type 2 diabetes uncontrolled on oral antidiabetic drugs were randomly assigned to receive exenatide or reference treatment according to French guidelines. Epicardial adipose tissue (EAT), myocardial triglyceride content (MTGC), hepatic triglyceride content (HTGC) and pancreatic triglyceride content (PTGC) were assessed 45 min after a standardized meal with 3T magnetic resonance imaging and proton magnetic resonance spectroscopy before and after 26 weeks of treatment. RESULTS: The study population had a mean glycated haemoglobin (HbA1c) level of 7.5 ± 0.2% and a mean body mass index of 36.1 ± 1.1 kg/m(2) . Ninety five percent had hepatic steatosis at baseline (HTGC ≥ 5.6%). Exenatide and reference treatment led to a similar improvement in HbA1c (-0.7 ± 0.3% vs. -0.7 ± 0.4%; p = 0.29), whereas significant weight loss was observed only in the exenatide group (-5.5 ± 1.2 kg vs. -0.2 ± 0.8 kg; p = 0.001 for the difference between groups). Exenatide induced a significant reduction in EAT (-8.8 ± 2.1%) and HTGC (-23.8 ± 9.5%), compared with the reference treatment (EAT: -1.2 ± 1.6%, p = 0.003; HTGC: +12.5 ± 9.6%, p = 0.007). No significant difference was observed in other ectopic fat stores, PTGC or MTGC. In the group treated with exenatide, reductions in liver fat and EAT were not associated with homeostatic model assessment of insulin resistance index, adiponectin, HbA1c or fructosamin change, but were significantly related to weight loss (r = 0.47, p = 0.03, and r = 0.50, p = 0.018, respectively). CONCLUSION: Our data indicate that exenatide is an effective treatment to reduce liver fat content and epicardial fat in obese patients with type 2 diabetes, and these effects are mainly weight loss dependent.
    Mots-clés : crmbm, epicardial adipose tissue, glucagon-like peptide 1 receptor agonist, hepatic triglyceride content, Magnetic Resonance Imaging, magnetic-resonance imaging, myocardial triglyceride content, Obesity, pancreatic triglyceride content, Proton Magnetic Resonance Spectroscopy, proton magnetic-resonance spectroscopy, type 2 diabetes.

  • FAIVRE A., ROBINET E., GUYE M., ROUSSEAU C., MAAROUF A., LE TROTER A., ZAARAOUI W., RICO A., CRESPY L., SOULIER E., CONFORT-GOUNY S., PELLETIER J., ACHARD S., RANJEVA J. - P., AUDOIN B. “Depletion of brain functional connectivity enhancement leads to disability progression in multiple sclerosis: A longitudinal resting-state fMRI study.”. Multiple Sclerosis (Houndmills, Basingstoke, England) [En ligne]. 2016. Vol. 22, n°13, p. 1695-1708. Disponible sur : < http://dx.doi.org/10.1177/1352458516628657 > (consulté le no date)
    Résumé : BACKGROUND: The compensatory effect of brain functional connectivity enhancement in relapsing-remitting multiple sclerosis (RRMS) remains controversial. OBJECTIVE: To characterize the relationships between brain functional connectivity changes and disability progression in RRMS. METHODS: Long-range connectivity, short-range connectivity, and density of connections were assessed using graph theoretical analysis of resting-state functional magnetic resonance imaging (fMRI) data acquired in 38 RRMS patients (disease duration: 120 ± 32 months) and 24 controls. All subjects were explored at baseline and all patients and six controls 2 years later. RESULTS: At baseline, levels of long-range and short-range brain functional connectivity were higher in patients compared to controls. During the follow-up, decrease in connections' density was inversely correlated with disability progression. Post-hoc analysis evidenced differential evolution of brain functional connectivity metrics in patients according to their level of disability at baseline: while patients with lowest disability at baseline experienced an increase in all connectivity metrics during the follow-up, patients with higher disability at baseline showed a decrease in the connectivity metrics. In these patients, decrease in the connectivity metrics was associated with disability progression. CONCLUSION: The study provides two main findings: (1) brain functional connectivity enhancement decreases during the disease course after reaching a maximal level, and (2) decrease in brain functional connectivity enhancement participates in disability progression.
    Mots-clés : crmbm, Disability, Functional connectivity, Functional MRI, Graph theory, Multiple Sclerosis.

  • FATEHI F., SALORT-CAMPANA E., LE TROTER A., BENDAHAN D., ATTARIAN S. “Muscle MRI of facioscapulohumeral dystrophy (FSHD): A growing demand and a promising approach.”. Revue Neurologique [En ligne]. 2016. Vol. 172, n°10, p. 566-571. Disponible sur : < http://dx.doi.org/10.1016/j.neurol.2016.08.002 > (consulté le no date)
    Résumé : Facioscapulohumeral muscular dystrophy (FSHD), an inherited and progressive muscle disorder, is among the most common hereditary muscle disorders. From a clinical vantage point, FSHD is characterized by weakness of the facial, shoulder (often with scapular winging), arm (including biceps and triceps) and abdominal muscles. Forearm muscles are usually spared and weakness is usually asymmetrical. Over the past few decades, muscle magnetic resonance imaging (MRI) has become established as a reliable and accurate noninvasive tool for the diagnosis and assessment of progression in neuromuscular diseases, showing specific patterns of muscle involvement for a number of myopathies. More recently, MRI has been used to noninvasively identify quantitative biomarkers, allowing evaluation of the natural progression of disease and assessment of therapeutic interventions. In the present review, the intention was to present the most significant MRI developments related to diagnosis and pattern recognition in FSHD and to discuss its capacity to provide outcome measures.
    Mots-clés : crmbm, Facioscapulohumeral dystrophy, FSHD, Measurement, MRI, Pattern recognition.

  • FOURé A. “New Imaging Methods for Non-invasive Assessment of Mechanical, Structural, and Biochemical Properties of Human Achilles Tendon: A Mini Review.”. Frontiers in Physiology [En ligne]. 2016. Vol. 7, p. 324. Disponible sur : < http://dx.doi.org/10.3389/fphys.2016.00324 > (consulté le no date)
    Résumé : The mechanical properties of tendon play a fundamental role to passively transmit forces from muscle to bone, withstand sudden stretches, and act as a mechanical buffer allowing the muscle to work more efficiently. The use of non-invasive imaging methods for the assessment of human tendon's mechanical, structural, and biochemical properties in vivo is relatively young in sports medicine, clinical practice, and basic science. Non-invasive assessment of the tendon properties may enhance the diagnosis of tendon injury and the characterization of recovery treatments. While ultrasonographic imaging is the most popular tool to assess the tendon's structural and indirectly, mechanical properties, ultrasonographic elastography, and ultra-high field magnetic resonance imaging (UHF MRI) have recently emerged as potentially powerful techniques to explore tendon tissues. This paper highlights some methodological cautions associated with conventional ultrasonography and perspectives for in vivo human Achilles tendon assessment using ultrasonographic elastography and UHF MRI.
    Mots-clés : crmbm, elastography, Magnetic Resonance Imaging, tendinopathy, tendon stiffness, Ultrasonography.

  • FOURé A., NOSAKA K., GASTALDI M., MATTEI J. - P., BOUDINET H., GUYE M., VILMEN C., LE FUR Y., BENDAHAN D., GONDIN J. “Effects of branched-chain amino acids supplementation on both plasma amino acids concentration and muscle energetics changes resulting from muscle damage: A randomized placebo controlled trial.”. Clinical Nutrition (Edinburgh, Scotland) [En ligne]. 2016. Vol. 35, n°1, p. 83-94. Disponible sur : < http://dx.doi.org/10.1016/j.clnu.2015.03.014 > (consulté le no date)
    Résumé : BACKGROUND & AIMS: Branched-chain amino acids promote muscle-protein synthesis, reduce protein oxidation and have positive effects on mitochondrial biogenesis and reactive oxygen species scavenging. The purpose of the study was to determine the potential benefits of branched-chain amino acids supplementation on changes in force capacities, plasma amino acids concentration and muscle metabolic alterations after exercise-induced muscle damage. METHODS: (31)P magnetic resonance spectroscopy and biochemical analyses were used to follow the changes after such damage. Twenty six young healthy men were randomly assigned to supplemented branched-chain amino acids or placebo group. Knee extensors maximal voluntary isometric force was assessed before and on four days following exercise-induced muscle damage. Concentrations in phosphocreatine [PCr], inorganic phosphate [Pi] and pH were measured during a standardized rest-exercise-recovery protocol before, two (D2) and four (D4) days after exercise-induced muscle damage. RESULTS: No significant difference between groups was found for changes in maximal voluntary isometric force (-24% at D2 and -21% at D4). Plasma alanine concentration significantly increased immediately after exercise-induced muscle damage (+25%) in both groups while concentrations in glycine, histidine, phenylalanine and tyrosine decreased. No difference between groups was found in the increased resting [Pi] (+42% at D2 and +34% at D4), decreased resting pH (-0.04 at D2 and -0.03 at D4) and the slower PCr recovery rate (-18% at D2 and -24% at D4). CONCLUSIONS: The damaged muscle was not able to get benefits out of the increased plasma branched-chain amino acids availability to attenuate changes in indirect markers of muscle damage and muscle metabolic alterations following exercise-induced muscle damage.
    Mots-clés : crmbm, Double blind randomized placebo controlled trial, Exercise induced-muscle damage, Magnetic Resonance Spectroscopy.

  • JUBEAU M., GONDIN J. “Methodological considerations for investigating the influence of neuromuscular electrical stimulation on pH heterogeneity.”. Magnetic Resonance in Medicine [En ligne]. 2016. Disponible sur : < http://dx.doi.org/10.1002/mrm.26511 > (consulté le no date)

  • KOBER F., JAO T., TROALEN T., NAYAK K. S. “Myocardial arterial spin labeling.”. Journal of Cardiovascular Magnetic Resonance: Official Journal of the Society for Cardiovascular Magnetic Resonance [En ligne]. 2016. Vol. 18, n°1, p. 22. Disponible sur : < http://dx.doi.org/10.1186/s12968-016-0235-4 > (consulté le no date)
    Résumé : Arterial spin labeling (ASL) is a cardiovascular magnetic resonance (CMR) technique for mapping regional myocardial blood flow. It does not require any contrast agents, is compatible with stress testing, and can be performed repeatedly or even continuously. ASL-CMR has been performed with great success in small-animals, but sensitivity to date has been poor in large animals and humans and remains an active area of research. This review paper summarizes the development of ASL-CMR techniques, current state-of-the-art imaging methods, the latest findings from pre-clinical and clinical studies, and future directions. We also explain how successful developments in brain ASL and small-animal ASL-CMR have helped to inform developments in large animal and human ASL-CMR.
    Mots-clés : arterial spin labeling, Cardiovascular magnetic resonance, crmbm, Ischemic heart disease, myocardial perfusion.

  • KOOB M., GIRARD N., GHATTAS B., FELLAH S., CONFORT-GOUNY S., FIGARELLA-BRANGER D., SCAVARDA D. “The diagnostic accuracy of multiparametric MRI to determine pediatric brain tumor grades and types.”. Journal of Neuro-Oncology [En ligne]. 2016. Vol. 127, n°2, p. 345-353. Disponible sur : < http://dx.doi.org/10.1007/s11060-015-2042-4 > (consulté le no date)
    Résumé : Childhood brain tumors show great histological variability. The goal of this retrospective study was to assess the diagnostic accuracy of multimodal MR imaging (diffusion, perfusion, MR spectroscopy) in the distinction of pediatric brain tumor grades and types. Seventy-six patients (range 1 month to 18 years) with brain tumors underwent multimodal MR imaging. Tumors were categorized by grade (I-IV) and by histological type (A-H). Multivariate statistical analysis was performed to evaluate the diagnostic accuracy of single and combined MR modalities, and of single imaging parameters to distinguish the different groups. The highest diagnostic accuracy for tumor grading was obtained with diffusion-perfusion (73.24 %) and for tumor typing with diffusion-perfusion-MR spectroscopy (55.76 %). The best diagnostic accuracy was obtained for tumor grading in I and IV and for tumor typing in embryonal tumor and pilocytic astrocytoma. Poor accuracy was seen in other grades and types. ADC and rADC were the best parameters for tumor grading and typing followed by choline level with an intermediate echo time, CBV for grading and Tmax for typing. Multiparametric MR imaging can be accurate in determining tumor grades (primarily grades I and IV) and types (mainly pilocytic astrocytomas and embryonal tumors) in children.
    Mots-clés : Brain Neoplasms, Child, crmbm, Diffusion Magnetic Resonance Imaging, Magnetic Resonance Angiography, Magnetic Resonance Spectroscopy.

  • LAYEC G., BRINGARD A., LE FUR Y., MICALLEF J. - P., VILMEN C., PERREY S., COZZONE P. J., BENDAHAN D. “Mitochondrial Coupling and Contractile Efficiency in Humans with High and Low V˙O2peaks.”. Medicine and Science in Sports and Exercise [En ligne]. 2016. Vol. 48, n°5, p. 811-821. Disponible sur : < http://dx.doi.org/10.1249/MSS.0000000000000858 > (consulté le no date)
    Résumé : INTRODUCTION: Endurance training elicits tremendous adaptations of the mitochondrial energetic capacity. Yet, the effects of training or physical fitness on mitochondrial efficiency during exercise are still unclear. Accordingly, the purpose of the present study was to examine in vivo the differences in mitochondrial efficiency and ATP cost of contraction during exercise in two groups of adults differing in their aerobic capacity. METHOD: We simultaneously assessed the ATP synthesis and O2 fluxes with P-magnetic resonance spectroscopy and pulmonary gas exchange measurements in seven endurance-trained (ET, V˙O2max: 67 ± 8 mL·min·kg) and seven recreationally active (RA, V˙O2max: 43 ± 7 mL·min·kg) subjects during 6 min of dynamic moderate-intensity knee extension. RESULTS: The ATP cost of dynamic contraction was not significantly different between ET and RA (P > 0.05). Similarly, end-exercise O2 consumption was not significantly different between groups (ET: 848 ± 155 mL·min and RA: 760 ± 131 mL·min, P > 0.05). During the recovery period, the PCr offset time constant was significantly faster in ET compared with RA (ET: 32 ± 8 s and RA: 43 ± 10 s, P < 0.05), thus indicating an increased mitochondrial capacity for ATP synthesis in the quadriceps of ET. In contrast, the estimated mitochondrial efficiency during exercise was not significantly different (P/O, ET: 2.0 ± 1.0 and RA: 1.8 ± 0.4, P > 0.05). Consequently, the higher mitochondrial capacity for ATP synthesis in ET likely originated from an elevated mitochondrial volume density, mitochondria-specific respiratory capacity, and/or slower postexercise inactivation of oxidative phosphorylation by the parallel activation mechanism. CONCLUSION: Together, these findings reveal that 1) mitochondrial and contractile efficiencies are unaltered by several years of endurance training in young adults, and 2) the training-induced improvement in mitochondrial energetic capacity appears to be independent from changes in mitochondrial coupling.
    Mots-clés : crmbm.

  • LE TROTER A., FOURé A., GUYE M., CONFORT-GOUNY S., MATTEI J. - P., GONDIN J., SALORT-CAMPANA E., BENDAHAN D. “Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches.”. Magma (New York, N.Y.) [En ligne]. 2016. Vol. 29, n°2, p. 245-257. Disponible sur : < http://dx.doi.org/10.1007/s10334-016-0535-6 > (consulté le no date)
    Résumé : OBJECTIVES: Atlas-based segmentation is a powerful method for automatic structural segmentation of several sub-structures in many organs. However, such an approach has been very scarcely used in the context of muscle segmentation, and so far no study has assessed such a method for the automatic delineation of individual muscles of the quadriceps femoris (QF). In the present study, we have evaluated a fully automated multi-atlas method and a semi-automated single-atlas method for the segmentation and volume quantification of the four muscles of the QF and for the QF as a whole. SUBJECTS AND METHODS: The study was conducted in 32 young healthy males, using high-resolution magnetic resonance images (MRI) of the thigh. The multi-atlas-based segmentation method was conducted in 25 subjects. Different non-linear registration approaches based on free-form deformable (FFD) and symmetric diffeomorphic normalization algorithms (SyN) were assessed. Optimal parameters of two fusion methods, i.e., STAPLE and STEPS, were determined on the basis of the highest Dice similarity index (DSI) considering manual segmentation (MSeg) as the ground truth. Validation and reproducibility of this pipeline were determined using another MRI dataset recorded in seven healthy male subjects on the basis of additional metrics such as the muscle volume similarity values, intraclass coefficient, and coefficient of variation. Both non-linear registration methods (FFD and SyN) were also evaluated as part of a single-atlas strategy in order to assess longitudinal muscle volume measurements. The multi- and the single-atlas approaches were compared for the segmentation and the volume quantification of the four muscles of the QF and for the QF as a whole. RESULTS: Considering each muscle of the QF, the DSI of the multi-atlas-based approach was high 0.87 ± 0.11 and the best results were obtained with the combination of two deformation fields resulting from the SyN registration method and the STEPS fusion algorithm. The optimal variables for FFD and SyN registration methods were four templates and a kernel standard deviation ranging between 5 and 8. The segmentation process using a single-atlas-based method was more robust with DSI values higher than 0.9. From the vantage of muscle volume measurements, the multi-atlas-based strategy provided acceptable results regarding the QF muscle as a whole but highly variable results regarding individual muscle. On the contrary, the performance of the single-atlas-based pipeline for individual muscles was highly comparable to the MSeg, thereby indicating that this method would be adequate for longitudinal tracking of muscle volume changes in healthy subjects. CONCLUSION: In the present study, we demonstrated that both multi-atlas and single-atlas approaches were relevant for the segmentation of individual muscles of the QF in healthy subjects. Considering muscle volume measurements, the single-atlas method provided promising perspectives regarding longitudinal quantification of individual muscle volumes.
    Mots-clés : crmbm, Fusion, Individual muscle volume measurements, MRI, Multi-atlas-based segmentation, Non-linear registration, Quadriceps femoris muscle.

  • LUTZ N. W., BANERJEE P., WILSON B. J., MA J., COZZONE P. J., FRANK M. H. “Expression of Cell-Surface Marker ABCB5 Causes Characteristic Modifications of Glucose, Amino Acid and Phospholipid Metabolism in the G3361 Melanoma-Initiating Cell Line.”. PloS One [En ligne]. 2016. Vol. 11, n°8, p. e0161803. Disponible sur : < http://dx.doi.org/10.1371/journal.pone.0161803 > (consulté le no date)
    Résumé : We present a pilot study aimed at determining the effects of expression of ATP-binding cassette member B5 (ABCB5), a previously described marker for melanoma-initiating cells, on cellular metabolism. Metabolic profiles for two groups of human G3361 melanoma cells were compared, i.e. wildtype melanoma cells with intact ABCB5 expression (ABCB5-WT) and corresponding melanoma cell variants with inhibited ABCB5 expression, through shRNA-mediated gene knockdown (ABCB5-KD). A comprehensive metabolomic analysis was performed by using proton and phosphorus NMR spectroscopy of cell extracts to examine water-soluble metabolites and lipids. Parametric and non-parametric statistical analysis of absolute and relative metabolite levels yielded significant differences for compounds involved in glucose, amino acid and phospholipid (PL) metabolism. By contrast, energy metabolism was virtually unaffected by ABCB5 expression. The sum of water-soluble metabolites per total protein was 17% higher in ABCB5-WT vs. ABCB5-KD G3361 variants, but no difference was found for the sum of PLs. Enhanced abundance was particularly pronounced for lactate (+ 23%) and alanine (+ 26%), suggesting an increase in glycolysis and potentially glutaminolysis. Increases in PL degradation products, glycerophosphocholine and glycerophosphoethanolamine (+ 85 and 123%, respectively), and redistributions within the PL pool suggested enhanced membrane PL turnover as a consequence of ABCB5 expression. The possibility of glycolysis modulation by an ABCB5-dependent IL1β-mediated mechanism was supported by functional studies employing monoclonal antibody (mAb)-dependent ABCB5 protein inhibition in wildtype G3361 melanoma cells. Our metabolomic results suggest that the underlying biochemical pathways may offer targets for melanoma therapy, potentially in combination with other treatment forms.
    Mots-clés : crmbm.

  • MARTIN A., GROSPRÊTRE S., VILMEN C., GUYE M., MATTEI J. - P., LE FUR Y., BENDAHAN D., GONDIN J. “The Etiology of Muscle Fatigue Differs between Two Electrical Stimulation Protocols.”. Medicine and Science in Sports and Exercise [En ligne]. 2016. Vol. 48, n°8, p. 1474-1484. Disponible sur : < http://dx.doi.org/10.1249/MSS.0000000000000930 > (consulté le no date)
    Résumé : PURPOSE: This study aimed at investigating the mechanisms involved in the force reduction induced by two electrical stimulation (ES) protocols that were designed to activate motor units differently. METHODS: The triceps surae of 11 healthy subjects (8 men; age, ~28 yr) was activated using ES applied over the tibial nerve. Two ES protocols (conventional [CONV]: 20 Hz, 0.05 ms vs wide-pulse high-frequency [WPHF]: 80 Hz, 1 ms) were performed and involved 40 trains (6 s on-6 s off) delivered at an intensity (IES) evoking 20% of maximal voluntary contraction. To analyze the mechanical properties of the motor units activated at IES, force-frequency relation was evoked before and after each protocol. H-reflex and M-wave responses evoked by the last stimulation pulse were also assessed during each ES protocol. Electromyographic responses (∑EMG) were recorded after each train to analyze the behavior of the motor units activated at IES. Metabolic variables, including relative concentrations of phosphocreatine and inorganic phosphate as well as intracellular pH, were assessed using P-MR spectroscopy during each protocol. RESULTS: Larger H-reflex amplitudes were observed during WPHF as compared with CONV, whereas opposite findings were observed for M-wave amplitudes. Despite this difference, both the force reduction (-26%) and metabolic changes were similar between the two protocols. The CONV protocol induced a rightward shift of the force-frequency relation, whereas a significant reduction of the ∑EMG evoked at IES was observed only for the WPHF. CONCLUSIONS: These results suggest that a decreased number of active motor units mainly contributed to WPHF-induced force decrease, whereas intracellular processes were most likely involved in the force reduction occurring during CONV stimulation.
    Mots-clés : crmbm.

  • MASSIRE A., TASO M., BESSON P., GUYE M., RANJEVA J. - P., CALLOT V. “High-resolution multi-parametric quantitative magnetic resonance imaging of the human cervical spinal cord at 7T.”. NeuroImage [En ligne]. 2016. Vol. 143, p. 58-69. Disponible sur : < http://dx.doi.org/10.1016/j.neuroimage.2016.08.055 > (consulté le no date)
    Résumé : Quantitative MRI techniques have the potential to characterize spinal cord tissue impairments occurring in various pathologies, from both microstructural and functional perspectives. By enabling very high image resolution and enhanced tissue contrast, ultra-high field imaging may offer further opportunities for such characterization. In this study, a multi-parametric high-resolution quantitative MRI protocol is proposed to characterize in vivo the human cervical spinal cord at 7T. Multi-parametric quantitative MRI acquizitions including T1, T2(*) relaxometry mapping and axial diffusion MRI were performed on ten healthy volunteers with a whole-body 7T system using a commercial prototype coil-array dedicated to cervical spinal cord imaging. Automatic cord segmentation and multi-parametric data registration to spinal cord templates enabled robust regional studies within atlas-based WM tracts and GM horns at the C3 cervical level. T1 value, cross-sectional area and GM/WM ratio evolutions along the cervical cord were also reported. An original correction method for B1(+)-biased T1 mapping sequence was additionally proposed and validated on phantom. As a result, relaxometry and diffusion parameters derived from high-resolution quantitative MRI acquizitions were reported at 7T for the first time. Obtained images, with unmatched resolutions compared to lower field investigations, provided exquisite anatomical details and clear delineation of the spinal cord substructures within an acquisition time of 30min, compatible with clinical investigations. Regional statistically significant differences were highlighted between WM and GM based on T1 and T2* maps (p<10(-3)), as well as between sensory and motor tracts based on diffusion tensor imaging maps (p<0.05). The proposed protocol demonstrates that ultra-high field spinal cord high-resolution quantitative MRI is feasible and lays the groundwork for future clinical investigations of degenerative spinal cord pathologies.
    Mots-clés : crmbm, diffusion tensor imaging, Quantitative MRI, Relaxometry mapping, spinal cord, Template-based segmentation, Ultra-high field.

  • PREVOST V. H., GIRARD O. M., VARMA G., ALSOP D. C., DUHAMEL G. “Minimizing the effects of magnetization transfer asymmetry on inhomogeneous magnetization transfer (ihMT) at ultra-high magnetic field (11.75 T).”. Magma (New York, N.Y.) [En ligne]. 2016. Vol. 29, n°4, p. 699-709. Disponible sur : < http://dx.doi.org/10.1007/s10334-015-0523-2 > (consulté le no date)
    Résumé : OBJECTIVES: The recently reported inhomogeneous magnetization transfer technique (ihMT) has been proposed for specific imaging of inhomogeneously broadened lines, and has shown great promise for characterizing myelinated tissues. The ihMT contrast is obtained by subtracting magnetization transfer images obtained with simultaneous saturation at positive and negative frequency offsets (dual frequency saturation experiment, MT (+/-)) from those obtained with single frequency saturation (MT (+)) at the same total power. Hence, ihMT may be biased by MT-asymmetry, especially at ultra-high magnetic field. Use of the average of single positive and negative frequency offset saturation MT images, i.e., (MT (+)+MT (-)) has been proposed to correct the ihMT signal from MT-asymmetry signal. MATERIALS AND METHODS: The efficiency of this correction method was experimentally assessed in this study, performed at 11.75 T on mice. Quantitative corrected ihMT and MT-asymmetry ratios (ihMTR and MTRasym) were measured in mouse brain structures for several MT-asymmetry magnitudes and different saturation parameter sets. RESULTS: Our results indicated a "safe" range of magnitudes (/MTRasym/<4 %) for which MT-asymmetry signal did not bias the corrected ihMT signal. Moreover, experimental evidence of the different natures of both MT-asymmetry and inhomogeneous MT contrasts were provided. In particular, non-zero ihMT ratios were obtained at zero MTRasym values. CONCLUSION: MTRasym is not a confounding factor for ihMT quantification, even at ultra-high field, as long as MTRasym is restricted to ±4 %.
    Mots-clés : Biomedical Engineering, Computer Appl. in Life Sciences, crmbm, dipolar order, Dipolar relaxation time, Health Informatics, ihMT, Imaging / Radiology, inhomogeneous magnetization transfer, MT-asymmetry, myelin, Solid State Physics.

  • RIDLEY B., BELTRAMONE M., WIRSICH J., LE TROTER A., TRAMONI E., AUBERT S., ACHARD S., RANJEVA J. - P., GUYE M., FELICIAN O. “Alien Hand, Restless Brain: Salience Network and Interhemispheric Connectivity Disruption Parallel Emergence and Extinction of Diagonistic Dyspraxia.”. Frontiers in Human Neuroscience [En ligne]. 2016. Vol. 10, p. 307. Disponible sur : < http://dx.doi.org/10.3389/fnhum.2016.00307 > (consulté le no date)
    Résumé : Diagonistic dyspraxia (DD) is by far the most spectacular manifestation reported by sufferers of acute corpus callosum (CC) injury (so-called "split-brain"). In this form of alien hand syndrome, one hand acts at cross purposes with the other "against the patient's will". Although recent models view DD as a disorder of motor control, there is still little information regarding its neural underpinnings, due to widespread connectivity changes produced by CC insult, and the obstacle that non-volitional movements represent for task-based functional neuroimaging studies. Here, we studied patient AM, the first report of DD in patient with complete developmental CC agenesis. This unique case also offers the opportunity to study the resting-state connectomics of DD in the absence of diffuse changes subsequent to CC injury or surgery. AM developed DD following status epilepticus (SE) which resolved over a 2-year period. Whole brain functional connectivity (FC) was compared (Crawford-Howell [CH]) to 16 controls during the period of acute DD symptoms (Time 1) and after remission (Time 2). Whole brain graph theoretical models were also constructed and topological efficiency examined. At Time 1, disrupted FC was observed in inter-hemispheric and intra-hemispheric right edges, involving frontal superior and midline structures. Graph analysis indicated disruption of the efficiency of salience and right frontoparietal (FP) networks. At Time 2, after remission of diagnostic dyspraxia symptoms, FC and salience network changes had resolved. In sum, longitudinal analysis of connectivity in AM indicates that DD behaviors could result from disruption of systems that support the experience and control of volitional movements and the ability to generate appropriate behavioral responses to salient stimuli. This also raises the possibility that changes to large-scale functional architecture revealed by resting-state functional magnetic resonance imaging (fMRI) (rs-fMRI) may provide relevant information on the evolution of behavioral syndromes in addition to that provided by structural and task-based functional imaging.
    Mots-clés : alien hand, callosal agenesis, crmbm, disconnection syndrome, epilepsy, Functional connectivity, Graph theory, Resting-state.

  • SDIKA M., TONSON A., LE FUR Y., COZZONE P. J., BENDAHAN D. “Multi-atlas-based fully automatic segmentation of individual muscles in rat leg.”. Magma (New York, N.Y.) [En ligne]. 2016. Vol. 29, n°2, p. 223-235. Disponible sur : < http://dx.doi.org/10.1007/s10334-015-0511-6 > (consulté le no date)
    Résumé : OBJECTIVE: To quantify individual muscle volume in rat leg MR images using a fully automatic multi-atlas-based segmentation method. MATERIALS AND METHODS: We optimized a multi-atlas-based segmentation method to take into account the voxel anisotropy of numbers of MRI acquisition protocols. We mainly tested an image upsampling process along Z and a constraint on the nonlinear deformation in the XY plane. We also evaluated a weighted vote procedure and an original implementation of an artificial atlas addition. Using this approach, we measured gastrocnemius and plantaris muscle volumes and compared the results with manual segmentation. The method reliability for volume quantification was evaluated using the relative overlap index. RESULTS: The most accurate segmentation was obtained using a nonlinear registration constrained in the XY plane by zeroing the Z component of the displacement and a weighted vote procedure for both muscles regardless of the number of atlases. The performance of the automatic segmentation and the corresponding volume quantification outperformed the interoperator variability using a minimum of three original atlases. CONCLUSION: We demonstrated the reliability of a multi-atlas segmentation approach for the automatic segmentation and volume quantification of individual muscles in rat leg and found that constraining the registration in plane significantly improved the results.
    Mots-clés : Anisotropy, crmbm, Magnetic Resonance Imaging, Multi-atlas, rat, Reproducibility of Results, Segmentation, skeletal muscle.

  • TASO M., GIRARD O. M., DUHAMEL G., LE TROTER A., FEIWEIER T., GUYE M., RANJEVA J. - P., CALLOT V. “Tract-specific and age-related variations of the spinal cord microstructure: a multi-parametric MRI study using diffusion tensor imaging (DTI) and inhomogeneous magnetization transfer (ihMT).”. NMR in biomedicine [En ligne]. 2016. Vol. 29, n°6, p. 817-832. Disponible sur : < http://dx.doi.org/10.1002/nbm.3530 > (consulté le no date)
    Résumé : Being able to finely characterize the spinal cord (SC) microstructure and its alterations is a key point when investigating neural damage mechanisms encountered in different central nervous system (CNS) pathologies, such as multiple sclerosis, amyotrophic lateral sclerosis or myelopathy. Based on novel methods, including inhomogeneous magnetization transfer (ihMT) and dedicated SC probabilistic atlas post-processing, the present study focuses on the in vivo characterization of the healthy SC tissue in terms of regional microstructure differences between (i) upper and lower cervical vertebral levels and (ii) sensory and motor tracts, as well as differences attributed to normal aging. Forty-eight healthy volunteers aged from 20 to 70 years old were included in the study and scanned at 3 T using axial high-resolution T2 *-w imaging, diffusion tensor imaging (DTI) and ihMT, at two vertebral levels (C2 and C5). A processing pipeline with minimal user intervention, SC segmentation and spatial normalization into a reference space was implemented in order to assess quantitative morphological and structural parameters (cross-sectional areas, scalar DTI and MT/ihMT metrics) in specific white and gray matter regions of interest. The multi-parametric MRI metrics collected allowed upper and lower cervical levels to be distinguished, with higher ihMT ratio (ihMTR), higher axial diffusivity (λ∥ ) and lower radial diffusivity (λ⊥ ) at C2 compared with C5. Significant differences were also observed between white matter fascicles, with higher ihMTR and lower λ∥ in motor tracts compared with posterior sensory tracts. Finally, aging was found to be associated with significant metric alterations (decreased ihMTR and λ∥ ). The methodology proposed here, which can be easily transferred to the clinic, provides new insights for SC characterization. It bears great potential to study focal and diffuse SC damage in neurodegenerative and demyelinating diseases. Copyright © 2016 John Wiley & Sons, Ltd.
    Mots-clés : Aging, crmbm, diffusion tensor imaging (DTI), ihMT, inhomogeneous magnetization transfer (ihMT), microstructure, multi-parametric MRI, spinal cord.

  • VARMA G., GIRARD O. M., PREVOST V. H., GRANT A. K., DUHAMEL G., ALSOP D. C. “In vivo measurement of a new source of contrast, the dipolar relaxation time, T1D , using a modified inhomogeneous magnetization transfer (ihMT) sequence.”. Magnetic Resonance in Medicine [En ligne]. 2016. Disponible sur : < http://dx.doi.org/10.1002/mrm.26523 > (consulté le no date)
    Résumé : PURPOSE: This paper describes a technique that can be used in vivo to measure the dipolar relaxation time, T1D , of macromolecular protons contributing to magnetization transfer (MT) in tissues and to produce quantitative T1D maps. THEORY AND METHODS: The technique builds upon the inhomogeneous MT (ihMT) technique that is particularly sensitive to tissue components with long T1D . A standard ihMT experiment was altered to introduce a variable time for switching between positive and negative offset frequencies for RF saturation. A model for the dependence of ihMT was developed and used to fit data acquired in vivo. RESULTS: Application of the method to images from brains of healthy volunteers produced values of T1D  = (5.9 ± 1.2) ms in gray matter and T1D  = (6.2 ± 0.4) ms in white matter regions and provided maps of the T1D parameter. CONCLUSION: The model and experiments described provide access to a new relaxation characteristic of tissue with potentially unique diagnostic information. Magn Reson Med, 2016. © 2016 International Society for Magnetic Resonance in Medicine.
    Mots-clés : crmbm, Dipolar relaxation, ihMT, inhomogeneous magnetization transfer, MT, myelin, Quantitative magnetization transfer.


  • WIRSICH J., PERRY A., RIDLEY B., PROIX T., GOLOS M., BÉNAR C., RANJEVA J. - P., BARTOLOMEI F., BREAKSPEAR M., JIRSA V., GUYE M. “Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy.”. NeuroImage: Clinical [En ligne]. 2016. Vol. 11, p. 707-718. Disponible sur : < http://dx.doi.org/10.1016/j.nicl.2016.05.010 >
    Résumé : The in vivo structure-function relationship is key to understanding brain network reorganization due to pathologies. This relationship is likely to be particularly complex in brain network diseases such as temporal lobe epilepsy, in which disturbed large-scale systems are involved in both transient electrical events and long-lasting functional and structural impairments. Herein, we estimated this relationship by analyzing the correlation between structural connectivity and functional connectivity in terms of analytical network communication parameters. As such, we targeted the gradual topological structure-function reorganization caused by the pathology not only at the whole brain scale but also both in core and peripheral regions of the brain. We acquired diffusion (dMRI) and resting-state fMRI (rsfMRI) data in seven right-lateralized TLE (rTLE) patients and fourteen healthy controls and analyzed the structure-function relationship by using analytical network communication metrics derived from the structural connectome. In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information) in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.
    Mots-clés : crmbm, Functional connectivity, Network based statistics, Network communication, rich club, structural connectivity, Temporal lobe epilepsy.

2015

Book Section


  • BERNARD M., KOBER F., CAUS T. “Assessing Cardiac Transplant Viability with MRS.”. In : eMagRes [En ligne]. [s.l.] : John Wiley & Sons, Ltd, 2015. Disponible sur : < http://onlinelibrary.wiley.com/doi/10.1002/9780470034590.emrstm1447/abstract >ISBN : 978-0-470-03459-0.
    Résumé : Heart transplantation remains the treatment of choice for severe heart failure and end-stage cardiac disease. In a context of organ shortage and increasing inclusion of marginal donors, it is important to safely use the available grafts but without overestimating myocardial injury, which could result in discarding viable grafts. The development of biomarkers to assess cardiac graft viability before transplantation is thus of major interest. An important indicator of graft quality is given by high-energy phosphate compound concentrations that can be assessed noninvasively using 31P magnetic resonance spectroscopy. This method is also of use in assessing graft viability after transplantation when cardiac allograft vasculopathy can develop, which is associated with diffuse perfusion defects that potentially affect energy metabolism.
    Mots-clés : 31P MRS, cardiac, cardiac allograft vasculopathy, crmbm, early graft failure, graft viability, transplantation.

0 | 50 | 100 | 150 | 200 | 250

--- Exporter la sélection au format